
Content:
Computational complexity theory is a branch of the theory of
computation in theoretical computer science that focuses on
classifying computational problems according to their
inherent difficulty, and relating those classes to each other.
One aspect of computational complexity is related to an
algorithm for solving instances of a problem. The
computational complexity of an algorithm is a measure of
how many steps the algorithm will require in the worst case
for an instance or input of a given size. The number of steps is
measured as a function of that size. Moreover, the theory of
computational complexity involves classifying problems
according to their inherent tractability or intractability, that is,
whether they are “easy” or “hard” to solve. This classification
scheme includes the well-known classes P and NP; the terms
“NP-complete” and “NP-hard” are related to the class NP.
In our research, given a problem, we clarify which class it is
belong to, and develop an efficient algorithm for solving it if
it is belong to the class P.

Keywords：computational complexity, algorithm
E-mail: shin@tokushima-u.ac.jp
Tel. +81-88-656-7223
Fax: +81-88-656-7223

crack

The class P consists of all
problems that can be efficiently
computed.

The P ≠ NP problem is whether P and NP are in fact the same.

The most fundamental classification is the distinction
between problems whose growth rate in terms of time is
polynomial and problems whose growth rate is
exponential.

Time-Complexity
Polynomial Time Exponential Time

The class NP is the set of decision
problems whose solutions can be
determined by a non-deterministic
Turing machine in polynomial time.

P

NP

𝑂𝑂(log 𝑛𝑛)

𝑂𝑂(𝑛𝑛2)
𝑂𝑂(𝑛𝑛)
𝑂𝑂(𝑛𝑛𝑘𝑘)

𝑂𝑂(2𝑛𝑛) 𝑂𝑂(22𝑛𝑛)
𝑂𝑂(2𝑛𝑛2)

（𝑛𝑛 is the size of input data and 𝑘𝑘 is the constant number.）

P ≠ NP Problem

